129 research outputs found

    Discovery and characterisation of fast radio transients

    Get PDF
    Many types of astronomical objects are detectable through the radio waves that they produce. The observed properties of sources in the 'radio sky' can vary on a wide range of timescales, both for intrinsic and extrinsic reasons. Transients are those sources whose observed properties change drastically within a timescale that a human astronomer can measure. Traditionally, the qualifier 'fast' refers to transients whose emission properties change significantly over less than a second, and most commonly on millisecond timescales. The two classes of fast radio transients studied in this thesis are pulsars and fast radio bursts. We are motivated to study these sources because they probe extreme astrophysical environments as well as the intervening magnetised and ionised medium between observer and source. Furthermore, the origin of the relatively recently discovered fast radio bursts remains enigmatic, though the properties of these signals share traits of pulsar emission. Thus, we aim to better understand the physical nature of fast radio bursts and their possible link to pulsar emission. We discuss the characteristics of these source classes and outline some of the outstanding scientific questions we can address through observations with a radio telescope and other complementary, multi-wavelength information

    A sample of low energy bursts from FRB 121102

    Get PDF
    We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at 1.4 GHz. The bursts are generally detected in less than a third of the 580-MHz observing bandwidth, demonstrating that narrow-band FRB signals may be more common than previously thought. We show that the bursts are likely faint versions of previously reported multi-component bursts. There is a striking lack of bursts detected below 1.35 GHz and simultaneous VLA observations at 3 GHz did not detect any of the 41 bursts, but did detect one that was not seen with Arecibo, suggesting preferred radio emission frequencies that vary with epoch. A power law approximation of the cumulative distribution of burst energies yields an index 1.8±0.3-1.8\pm0.3 that is much steeper than the previously reported value of 0.7\sim-0.7. The discrepancy may be evidence for a more complex energy distribution. We place constraints on the possibility that the associated persistent radio source is generated by the emission of many faint bursts (700\sim700 ms1^{-1}). We do not see a connection between burst fluence and wait time. The distribution of wait times follows a log-normal distribution centered around 200\sim200 s; however, some bursts have wait times below 1 s and as short as 26 ms, which is consistent with previous reports of a bimodal distribution. We caution against exclusively integrating over the full observing band during FRB searches, because this can lower signal-to-noise.Comment: Accepted version. 16 pages, 7 figures, 1 tabl

    Scattering analysis of LOFAR pulsar observations

    Get PDF
    We measure the effects of interstellar scattering on average pulse profiles from 13 radio pulsars with simple pulse shapes. We use data from the LOFAR High Band Antennas, at frequencies between 110 and 190~MHz. We apply a forward fitting technique, and simultaneously determine the intrinsic pulse shape, assuming single Gaussian component profiles. We find that the constant τ\tau, associated with scattering by a single thin screen, has a power-law dependence on frequency τνα\tau \propto \nu^{-\alpha}, with indices ranging from α=1.50\alpha = 1.50 to 4.04.0, despite simplest theoretical models predicting α=4.0\alpha = 4.0 or 4.44.4. Modelling the screen as an isotropic or extremely anisotropic scatterer, we find anisotropic scattering fits lead to larger power-law indices, often in better agreement with theoretically expected values. We compare the scattering models based on the inferred, frequency dependent parameters of the intrinsic pulse, and the resulting correction to the dispersion measure (DM). We highlight the cases in which fits of extreme anisotropic scattering are appealing, while stressing that the data do not strictly favour either model for any of the 13 pulsars. The pulsars show anomalous scattering properties that are consistent with finite scattering screens and/or anisotropy, but these data alone do not provide the means for an unambiguous characterization of the screens. We revisit the empirical τ\tau versus DM relation and consider how our results support a frequency dependence of α\alpha. Very long baseline interferometry, and observations of the scattering and scintillation properties of these sources at higher frequencies, will provide further evidence.Comment: 24 pages, 23 figures, supplementary appendi

    Simultaneous X-ray, gamma-ray, and Radio Observations of the repeating Fast Radio Burst FRB 121102

    Full text link
    We undertook coordinated campaigns with the Green Bank, Effelsberg, and Arecibo radio telescopes during Chandra X-ray Observatory and XMM-Newton observations of the repeating fast radio burst FRB 121102 to search for simultaneous radio and X-ray bursts. We find 12 radio bursts from FRB 121102 during 70 ks total of X-ray observations. We detect no X-ray photons at the times of radio bursts from FRB 121102 and further detect no X-ray bursts above the measured background at any time. We place a 5σ\sigma upper limit of 3×10113\times10^{-11} erg cm2^{-2} on the 0.5--10 keV fluence for X-ray bursts at the time of radio bursts for durations <700<700 ms, which corresponds to a burst energy of 4×10454\times10^{45} erg at the measured distance of FRB 121102. We also place limits on the 0.5--10 keV fluence of 5×10105\times10^{-10} erg cm2^{-2} and 1×1091\times10^{-9} erg cm2^{-2} for bursts emitted at any time during the XMM-Newton and Chandra observations, respectively, assuming a typical X-ray burst duration of 5 ms. We analyze data from the Fermi Gamma-ray Space Telescope Gamma-ray Burst Monitor and place a 5σ\sigma upper limit on the 10--100 keV fluence of 4×1094\times10^{-9} erg cm2^{-2} (5×10475\times10^{47} erg at the distance of FRB 121102) for gamma-ray bursts at the time of radio bursts. We also present a deep search for a persistent X-ray source using all of the X-ray observations taken to date and place a 5σ\sigma upper limit on the 0.5--10 keV flux of 4×10154\times10^{-15} erg s1^{-1} cm2^{-2} (3×10413\times10^{41} erg~s1^{-1} at the distance of FRB 121102). We discuss these non-detections in the context of the host environment of FRB 121102 and of possible sources of fast radio bursts in general.Comment: 13 pages, 5 figures, published in Ap
    corecore